Acústica Capítulo 3 Acústica Musical

Acústica Musical

3.1. Introducción

La Acústica Musical estudia no sólo el comportamiento de los instrumentos musicales (tanto acústicos como electroacústicos), sino también las relaciones entre los distintos sonidos para dar origen a sensaciones musicalmente significativas, como la percepción de una escala musical, la sensación de consonancia y disonancia, los diferenciación tímbrica, etc.

3.2. Consonancia y disonancia
Al superponer dos sonidos de frecuencias muy próximas entre sí tiene lugar un fenómeno de batido (batimento) o pulsaciones entre ambos, consistente en una fluctuación periódica de la amplitud. Por ejemplo, si superponemos dos tonos puros de 700 Hz y 800 Hz e igual amplitud, se tiene la situación ilustrada en la Figura 3.1. Al sumarlos, dado que en el instante inicial (t = 0) están en fase (es decir que los cruces por cero coinciden en el tiempo), la amplitud se duplica. A medida que transcurre el tiempo, debido a la diferencia de frecuencia, las dos senoides se van desfasando, y hacia los 5 ms, el octavo semiperiodo de la senoide de 800 Hz y el séptimo de la de 700 Hz están prácticamente en contrafase, razón por la cual el resultado es casi nulo. Hacia los 10 ms vuelven a estar en fase, y por lo tanto la amplitud vuelve a ser doble. Se obtiene así un sonido modulado por una envolvente que se repite cada 10 ms, es decir que tiene una frecuencia de 100 Hz. Obsérvese que esta frecuencia es la diferencia entre las dos frecuencias superpuestas:

100 Hz = 800 Hz – 700 Hz

El resultado anterior se puede generalizar. Si se superponen (suman) dos sonidos de frecuencias f1 y f2, (f1 mayor que f2), entonces aparecen pulsaciones de frecuencia f1 – f2. Si la diferencia de frecuencias es muy pequeña, entonces las pulsaciones serán
muy lentas, y no se percibirán como una pulsación sino como una suave envolvente. Por ejemplo, si las frecuencias son 440,1 Hz y 440 Hz, la diferencia es 0,1 Hz, es decir una pulsación cada 10 s. En este caso, dado que la gran mayoría de las notas usadas en música son mucho más cortas que eso, no llegará a completarse una pulsación, produciéndose más bien la sensación de un sonido más cantado, más expresivo. Si las pulsaciones son un poco más rápidas, por ejemplo 1 ó 2 Hz, se percibe un efecto llamado trémolo, semejante a notas repetidas. Si son bastante más rápidas, por ejemplo 5 ó 10 Hz hasta unos 50 Hz, el resultado produce una sensación de agitación comúnmente denominada disonancia.

El efecto de batido analizado anteriormente suponía que los sonidos eran tonos puros, es decir ondas senoidales. Si en lugar de ello se tienen dos sonidos de los más frecuentemente utilizados en la música, es decir sonidos formados por cierta cantidad de armónicos, es posible que se produzcan batidos entre los armónicos de ambos sonidos. Supongamos, por ejemplo, un acorde formado por dos sonidos de 220 Hz y 311 Hz (un LA y un RE# respectivamente). Es sabido en música que dicho acorde resulta disonante. Si efectuamos la resta entre ambas frecuencias obtenemos:

311 Hz – 220 Hz = 91 Hz

que es un batido demasiado rápido para provocar sensación de disonancia. Pero si tenemos en cuenta los armónicos de ambos, que son respectivamente 220 Hz, 440 Hz, 660 Hz, … y 311 Hz, 622 Hz, 933 Hz, …, resulta que el tercer armónico de 220 Hz, es decir 660 Hz, interfiere con el segundo armónico de 311 Hz, es decir 622 Hz, causando pulsaciones de frecuencia:

660 Hz – 622 Hz = 38 Hz

El resultado es una sensación de disonancia. Si los sonidos hubieran sido senoidales, si bien la combinación sonaría algo extraña, no se percibiría casi agitación alguna. Nos preguntamos ahora cuándo dos sonidos forman un acorde consonante. La condición para esto es que no exista interferencia entre armónicos importantes, es decir intensos, de uno y otro sonido. Así, tenemos que la consonancia más perfecta es el unísono (frecuencias exactamente iguales, ya que en ese caso no hay en absoluto pulsaciones. Luego sigue la octava, es decir cuando los sonidos están en una relación de frecuencias 2:1 (un sonido tiene el doble de frecuencia que el otro). Aquí tampoco hay posibilidad de “choques” entre armónicos, porque todos los armónicos del más agudo coinciden exactamente con armónicos del más grave. Luego sigue la quinta, que corresponde a una relación de frecuencias de 3:2 (uno de los sonidos tiene frecuencia 1,5 veces la del otro). Tomemos por ejemplo la quinta formada por el LA de 220 Hz y el MI de 330 Hz. En este caso los armónicos sucesivos, mostrados en la Figura 3.2, difieren en 110 Hz ó más.

3.3. Escalas musicales
Las escalas musicales surgen históricamente de la necesidad de satisfacer tres principios: economía, reproducibilidad, y funcionalidad.

3.3.1. Economía
De todos los sonidos disponibles (es decir audibles) deben seleccionarse la menor cantidad posible. Una razón es que la mayoría de los instrumentos permiten realizar sólo una cantidad relativamente pequeña de sonidos. Algunas excepciones son la voz humana, los instrumentos de arco (violín, viola, etc.) y el trombón a vara. En el caso de la música grupal (orquestas, bandas), el hecho de que algunos instrumentos posean una cantidad limitada de sonidos condiciona fuertemente los sonidos utilizables por los instrumentos de afinación continua. Otra razón es la necesidad de lograr la máxima variedad con la mayor simplicidad.

3.3.2. Reproducibilidad
Los sonidos seleccionados deben ser fácilmente reproducibles, tanto vocal como instrumentalmente. Cuando se habla de “reproducibles” significa que debe ser fácil de lograr una afinación suficientemente precisa como para no alterar de modo apreciable el sentido de lo que se ejecuta o canta.

3.3.3. Funcionalidad
La escala adoptada debe satisfacer los criterios estéticos correspondientes al uso que se le va a dar. Por ejemplo, si el uso será armónico (es decir que se emplearán combinaciones simultáneas de sonidos), entonces la mayor cantidad posible de superposiciones entre sonidos de la escala deberán resultar aceptables o “agradables” de acuerdo al estilo armónico que se va a practicar. Esto implica que al adoptar una escala se deben tener en cuenta cuestiones como el gusto y otros aspectos.

3.3.4. Escalas para uso monofónico
En este caso, que corresponde a las músicas más primitivas, sólo aparece un sonido por vez. Corresponde al canto o a los instrumentos monofónicos como la flauta, etc. El principio de funcionalidad en este caso no implica ninguna restricción. El principio
de reproducibilidad requiere casi exclusivamente la memoria, ya que los sonidos sucesivos deben ser fácilmente memorizables.
El criterio básico será que existan armónicos comunes entre los sonidos más importantes de la escala, ya que de esa manera éstos actuarán como “pivotes” entre ambos, permitiendo una transición segura, es decir con buena afinación, entre ellos.
El intervalo más fácil de memorizar es el unísono (igual frecuencia), ya que corresponde a una repetición exacta de la altura anterior. Luego sigue la octava, ya que la octava de un sonido equivale a su segundo armónico. Después sigue la quinta, cuyo segundo armónico coincide con el tercero de la nota original. Podríamos seguir investigando los intervalos básicos, pero dado que los armónicos superiores al tercero son en general poco intensos, no resulta muy seguro basarse en la memoria de armónicos difíciles
de escuchar.
Se utiliza en realidad otro criterio, que es el encadenamiento de quintas y de octavas, es decir que partiendo de un sonido, se toma primero su quinta, luego la quinta de la quinta, y así sucesivamente hasta completar un número deseado de sonidos. Para la
escala más simple, se toman siete sonidos, que en notación musical son:

Luego se sube o baja la cantidad de octavas que haga falta para que todos los sonidos se encuentren dentro de una misma octava. Así, el fa se sube una octava, el do y el sol no se modifican, el re y el la se bajan una octava, y el mi y el si se bajan dos octavas. Se
obtiene la escala recuadrada en línea de puntos:

El último paso sería reordenar las notas de modo que sus frecuencias vayan en aumento. La escala así obtenida se llama escala de Pitágoras, o escala pitagórica, ya que el célebre filósofo y matemático griego fue quien la sistematizó.

3.3.5. Escalas para uso armónico o polifónico
En un estadio más avanzado de la evolución de la música surge la necesidad de combinar sonidos simultáneos, al intentar varias personas cantar una misma melodía. Entre cantantes de igual tesitura vocal era posible cantar al unísono (igual altura). Pero, por ejemplo, entre las voces masculinas y las femeninas hay una diferencia promedio de una octava, de modo que el primer intervalo de uso simultáneo (además del caso trivial del unísono) fue la octava (relación de frecuencias 2:1). Luego fueron surgiendo otros
intervalos, como la quinta (3:2) y la cuarta (4:3), y posteriormente surgió la polifonía, en la cual se superponían diferentes melodías, formando en cada instante diversos intervalos simultáneos.
El principio de funcionalidad válido para esta aplicación requiere que la mayor cantidad posible de superposiciones de sonidos de la escala que se adopte resulte “agradable”, concepto desde luego muy relativo. En la época en que se consolidaron las escalas sobre las que se basan las hoy en uso, el criterio era el de la consonancia. Las consonancias disponibles son, en orden decreciente de perfección, las ya indicadas en la Tabla 3.1 (dicho orden coincide aproximadamente con el orden histórico en
que fueron siendo aceptadas en la evolución de la música). En una música polifónica desarrollada, es de esperar que cada una de estas consonancias aparezca con cierta frecuencia, por lo que es preciso elegir los sonidos de la escala de manera de lograr la mayor
cantidad posible de superposiciones consonantes. En la escala de Pitágoras, las octavas, las quintas y las cuartas son acústicamente perfectas, pero las terceras y sextas no. Si tomamos por ejemplo, el intervalo entre un DO y un MI pitagóricos, que parecería ser una tercera mayor, resulta la siguiente relación de frecuencias:

donde los cuatro primeros factores 3/2 corresponden al encadenamiento de cuatro quintas desde el do hasta el mi agudo, y los factores 1/2 corresponden a bajar dos octavas.

Vemos que el resultado difiere de una tercera mayor acústicamente perfecta, a la cual correspondería una relación de 5/4 , es decir:

La diferencia, correspondiente a una relación 81/80, se denomina coma pitagórica, y es un pequeño intervalo de alrededor de 1/10 de tono. Esta diferencia es claramente perceptible, produciendo una consonancia no tan perfecta como el intervalo perfecto.
Este inconveniente aparece porque al construir la escala pitagórica no se utilizaron terceras perfectas. Para subsanarlo, en lugar de generar la escala por encadenamiento de 6 quintas, se utilizan sólo 3 quintas, lo cual origina 4 notas. Las tres notas que faltan se
logran tomando las terceras mayores perfectas sobre las tres primeras notas:

Luego se procede igual que en la escala de Pitágoras, subiendo o bajando la cantidad de octavas que haga falta para que todos los sonidos se encuadren dentro de una misma octava. Así, el fa y el la se suben una octava, y el re se baja una octava. Finalmente se
reordenan. Esta escala se denomina escala natural, escala perfecta o escala de Aristógenes.

3.3.6. Escala temperada
Tanto la escala pitagórica como la natural poseen 7 notas en cada octava. Al ir evolucionando la música, ya no fue suficiente con estas 7 notas. Así, la denominada música ficta fue introduciendo algunas notas falsas (“ficta” significa “fingida” o “falsa”)
no pertenecientes a la escala. Hay varias razones por las cuales resulta interesante agregar algunas notas más.
La primera es la necesidad de la transposición, es decir subir o bajar una melodía para adaptarla a la tesitura de una voz o instrumento diferente de aquel para el que fue concebida. La transposición más simple es la transposición a la octava superior o inferior según el caso, pero a veces tal transposición resulta excesiva, ya que quizás era suficiente con transportar una quinta o una cuarta. El problema es que para realizar una transposición con esos intervalos hace falta agregar un sonido nuevo en la escala de
Pitágoras y dos en la natural.
La segunda razón es la necesidad de realizar modulaciones. En música, modular equivale a realizar un cambio de tonalidad, es decir de escala, dentro de una misma pieza, de manera que algunos pasajes de la pieza utilizan una escala, y otros, otra escala.

Ambas situaciones requieren, entonces, el agregado de nuevos sonidos a la escala. Esto tiene el inconveniente de que si se quiere conservar el carácter acústicamente perfecto de los intervalos de la escala, se haría necesario agregar una cantidad enormemente
grande de nuevos sonidos, lo cual no sólo no es práctico sino que además va en contra del concepto mismo de escala planteado al principio.
Después de diversas pruebas durante varios siglos se propuso una escala con 12 sonidos en cada octava, en la cual los intervalos elegidos, pese a no ser perfectos, resultan bastante aceptables. Esta escala se denomina escala temperada. En realidad se han propuesto y utilizado históricamente varias escalas temperadas. La actualmente en uso es la que utiliza el temperamento uniforme. En ella se divide la octava en 12 intervalos exactamente iguales, denominados semitonos, cuyas frecuencias sucesivas están
relacionadas por la expresión:

Con esta ecuación se pueden calcular, a partir de una frecuencia estándar, como la del LA 440 Hz, las frecuencias de todos los otros sonidos de la escala. Los valores correspondientes a la octava central se incluyeron en el capítulo 2.

3.4. Instrumentos musicales acústicos
Haremos aquí una breve descripción de los mecanismos básicos de producción de sonido de los instrumentos musicales. Los instrumentos musicales se clasifican según el medio productor de sonido en instrumentos de cuerda, de viento y de percusión.

3.4.1. Instrumentos de cuerda
Los instrumentos de cuerda producen sus sonidos por medio de una cuerda vibrante. Los métodos para poner la cuerda en vibración son de tres tipos: la percusión, el punteo, y el frotado. La percusión consiste en golpear la cuerda, como sucede en el piano. El punteo, en separar la cuerda de su posición de reposo y soltarla, mecanismo característico de la guitarra. Finalmente, el frotado consiste en rozar la cuerda con un material de gran adherencia como ciertas fibras naturales y sintéticas, procedimiento
utilizado en los instrumentos como el violín.
De estos tres mecanismos, el de frotado es el único que permite entregar energía en forma permanente, y así reponer la que se va disipando. En los otros casos el sonido se extingue más o menos rápidamente.
Cuando la cuerda vibra, transmite en forma directa al aire algo de energía sonora. Sin embargo, el mecanismo principal de emisión de sonido no es éste. La mayor parte de la energía de la cuerda pasa a través del puente (apoyo de la cuerda) a una tabla delgada
de gran superficie denominada placa armónica, tabla armónica o caja armónica, y al vibrar ésta se produce una importante emisión sonora.
Se puede verificar lo anterior comparando una guitarra eléctrica sin amplificación con una guitarra acústica. La guitarra acústica posee caja armónica, y en cambio la guitarra eléctrica no. El sonido de esta última es prácticamente inaudible. La frecuencia de vibración de una cuerda depende de la tensión que soportan, de su masa (o peso) por unidad de longitud, y de su longitud. Si T es la tensión en kgf (kilogramos fuerza), m es la densidad lineal (masa por unidad de longitud), en g/m (gramos por metro), y L es la longitud en cm, entonces la frecuencia f viene dada por la fórmula:

que corresponde a un si grave, una octava y un semitono por debajo del do central. La fórmula revela varias cosas. En primer lugar, al tensar más la cuerda (es decir al aumentar T), aumenta la frecuencia. Este es el método clásico para afinar un instrumento
de cuerda: al ajustar las clavijas se modifica precisamente la tensión. En segundo lugar, al aumentar la densidad baja la frecuencia. Por ese motivo siempre las cuerdas graves son más gruesas. En la guitarra, por ejemplo, dado que una cuerda de nylon con la masa suficiente para las cuerdas más graves sería imprácticamente gruesa, se las recarga con un entorchado (arrollamiento) de cobre. En tercer lugar, la frecuencia es inversamente proporcional a la longitud L. Este principio se utiliza en los instrumentos de
mástil como la guitarra, el violín, el contrabajo, etc. para obtener muchos sonidos diferentes de cada cuerda (en el piano y en el arpa esto no es necesario). Otra aplicación de esta propiedad es que al reducir la longitud de la cuerda a la mitad, su frecuencia aumenta
al doble, es decir sube una octava. Este fue uno de los primeros descubrimientos de la acústica antigua, realizada por los griegos utilizando el monocordio, un instrumento de una sola cuerda. Otro descubrimiento vinculado con esta propiedad es que si se divide la cuerda en partes iguales, se obtiene la serie de armónicos. Al dividirla por 2, se obtiene el segundo armónico, al dividirla por 3, el tercero, y así sucesivamente. Esto es utilizado por los guitarristas, para obtener el efecto denominado armónico.

3.4.2. Instrumentos de viento
Los instrumentos de viento producen sonido por vibración de una así denominada columna de aire. La columna de aire es simplemente el aire dentro de un tubo, y el mecanismo de vibración consiste en que la onda sonora se refleja una y otra vez en los extremos del tubo, siendo un hecho de lo más notable que la reflexión se produce lo mismo esté el extremo abierto o cerrado (aunque con diferentes características). Hay dos mecanismos de producción de sonido en una columna de aire. El primero es el de un obstáculo que provoca remolinos o turbulencias que luego son acentuadas por la resonancia del tubo. Es el caso de la flauta. El segundo es el de la lengüeta, es decir una lámina elástica de metal, caña o plástico que obstruye el pasaje del aire. Esto implica un aumento de presión hasta que finalmente se vence su resistencia. Esto produce una descompresión que vuelve a obstruir el pasaje de aire, repitiéndose el ciclo. A esta categoría pertenece la mayoría de los instrumentos (oboe, clarinete, fagot, etc.). Inclusive los instrumentos denominados metales, como el trombón o la trompeta, utilizan este mecanismo, donde la lengüeta está formada por los labios presionados.

La frecuencia de los instrumentos de viento depende de la velocidad del sonido c y de la longitud del tubo L, según la fórmula aproximada, válida para tubos abiertos en ambos extremos, como la flauta, el oboe, la trompeta, etc.:

En este caso sólo aparecen los armónicos impares. Esto da un timbre muy particular, del cual el ejemplo más representativo es el clarinete.
La primera observación está referida a la dependencia de la velocidad del sonido. Como ésta aumenta con la temperatura, resulta que la frecuencia producida por un instrumento de viento aumenta con la temperatura. Esto justifica por qué los vientistas deben
“calentar” el instrumento, y también por qué al variar la temperatura durante un espectáculo los vientos se desafinan.
La segunda observación se refiere a la variación inversa con la longitud del tubo. Esto es similar a lo que sucedía en las cuerdas. En este caso hay tres formas de variar la longitud. Una forma es mediante orificios, como en la flauta. Al cerrar todos los orificios,
la longitud es máxima, y el tono producido, grave. A medida que se van destapando orificios, la longitud efectiva del tubo se va achicando, y el tono se va haciendo más agudo. Otra forma es mediante unas válvulas que intercalan trozos adicionales de tubo,
como en la trompeta. La última forma, es mediante un tubo deslizante (tipo telescopio), que al introducirse o extraerse del tubo principal reduce o aumenta la longitud total.
La tercera observación es que mediante el procedimiento anterior no se puede obtener mucho más de una octava, ya que cuando la longitud del tubo se vuelve demasiado pequeña, la calidad del sonido empeora. Por otra parte, a diferencia de la guitarra o el violín, donde hay varias cuerdas, en una flauta no es posible tener varios tubos (salvo en la denominada flauta de Pan). Entonces se recurre a la producción de armónicos.
Soplando de una forma particular, es posible seleccionar qué armónico se producirá (o lo que es lo mismo, se inhiben los otros). Combinando los armónicos con la variación de la longitud por cualquiera de los procedimientos detallados, se consigue cubrir varias octavas.

3.4.3. Instrumentos de percusión
Los instrumentos de percusión son aquéllos que producen sonido al golpear objetos. Los hay de altura determinada, como los xilófonos (placas de madera), los metalófonos (placas de metal) y las campanillas (varillas de metal), y los de altura indeterminada,
como los parches (tambores, bombos) en general (salvo los timbales), los platillos, etc. A diferencia de los instrumentos de cuerda y de viento, los instrumentos de percusión crean sonidos con espectro no armónico, por lo cual siempre aparecen parciales o
sobretonos no armónicos. Cuando éstos son débiles, la altura es determinada, pero cuando son intensos (como en los tom-tom) o muy abundantes (como en los platillos), la altura es indeterminada. En muchos instrumentos se crea además una resonancia con
una columna de aire, por ejemplo en la marimba, o el vibrafón, lo cual acentúa el sonido y ayuda a filtrar los parciales inarmónicos.
Dentro de la percusión existen efectos especiales, como el uso de un arco de contrabajo sobre el borde de un platillo, o el efecto de las escobillas, o el de los resortes en el redoblante.
La percusión provee una gran riqueza de posibilidades, aunque en mucha música se la relega al papel de una simple base rítmica.

3.5. Instrumentos musicales electrónicos
Los instrumentos musicales electrónicos surgieron prácticamente con la electrónica, pero recién alcanzaron difusión masiva con el advenimiento de la tecnología digital.
Antes de eso, los sintetizadores analógicos eran, o bien muy rudimentarios, o bien excesivamente costosos e inaccesibles, y, en cualquier caso, reservados para los especialistas, debido a las dificultades para obtener los sonidos deseados. En esta sección haremos un descripción muy sucinta de algunas de las características más importantes de estos instrumentos.

3.5.1. Osciladores
El elemento fundamental de todo sintetizador es el oscilador, es decir el dispositivo encargado de generar la señal eléctrica que luego se transformará en onda sonora. La salida de un oscilador puede controlarse por medio de varios parámetros. En primer lugar, puede controlarse la frecuencia, que determinará la altura del sonido producido.
Luego está la amplitud, que determina la sonoridad. Después, podemos seleccionar la forma de onda. En los sintetizadores analógicos existían pocas formas de onda posibles:
ondas senoidal, cuadrada y triangular, trenes de pulsos, y en algunos casos ruido blanco.
En los sintetizadores digitales actuales, es posible seleccionar cientos y hasta miles de formas de onda diferentes. Ello se debe a que se utilizan sonidos muestreados, es decir sonidos reales (o sintéticos) grabados y almacenados en bancos de memoria. Luego,
cada vez que se requiere producir un sonido, el oscilador simplemente reproduce el sonido durante el tiempo que haga falta (según la duración de la nota a ejecutar).

3.5.2. Control de envolventes
Hay muchos parámetros que pueden controlarse por medio de envolventes. Originalmente la envolvente surge como modelo físico para describir cómo varía en el tiempo de la amplitud de una forma de onda (capítulo 1), tal como sucede en todos los instrumentos acústicos. En un contexto más general, una envolvente es la evolución en el tiempo de cualquier parámetro imaginable asociado a un generador de sonido. Así, pueden variar en el tiempo la altura, el contenido armónico, etc.

3.5.3. Envolvente de altura
La envolvente de altura (o de fercuencia fundamental) permite simular efectos de los instrumentos reales, los cuales varían inicialmente un poco su frecuencia. También pueden generar sonidos nuevos, o que imitan sonidos naturales, como los ladridos.

3.5.4. Envolvente de filtrado
Uno de los procedimientos dilectos de la época de los sintetizadores analógicos era generar una forma de onda con un gran contenido armónico (por ejemplo un tren de pulsos muy angostos y muy altos), y luego aplicarles diversos filtros que eliminaban o atenuaban algunos de los armónicos, o bien enfatizaban otros. La envolvente aplicada a estos filtros, permitía ir cambiando en el tiempo a qué armónicos se daba preferencia. En los sintetizadores actuales, la envolvente de filtrado permite, por ejemplo, simular
electrónicamente el hecho general de que los armónicos de alta frecuencia se atenúan más rápido que los de baja frecuencia. Entonces si se tiene un filtro que deja pasar sólo las frecuencias hasta cierta frecuencia fc, reduciendo paulatinamente esa frecuencia se logra ir eliminando primero los armónicos de mayor frecuencia.

3.5.5. Moduladores
Otra característica habitual en los instrumentos acústicos es el control de la expresión a través de pequeñas fluctuaciones periódicas de algunos parámetros, por ejemplo la altura (vibrato) o la amplitud (trémolo). Si en lugar de las envolventes (o si además de ellas) se agrega una modulación en los correspondientes parámetros de control del oscilador, se consigue simular dicha expresividad. La aplicación de moduladores se estudiará más detenidamente en el capítulo 18 para el caso de los efectos.

3.5.6. Seguimiento de altura (key tracking)
En los instrumentos acústicos, gran parte de las propiedades de los sonidos varían según qué nota se esté ejecutando. Por ejemplo, las notas más graves suelen tener un contenido armónico mayor que las más agudas. También sus envolventes (ya sea la primaria, es decir la de amplitud, como cualquier otra que esté actuando sobre diversas características del sonido) pueden tener velocidades distintas según la altura. Por ejemplo, un sonido agudo se extingue más rápidamente, por lo cual su envolvente decaerá
más rápido que la de los sonidos graves.

3.5.7. Controladores
Los osciladores, con todas las características descriptas, pueden ser controlados por medio de una interfaz. Una interfaz es un dispositivo que permite la comunicación entre entes de naturaleza diversa, por ejemplo entre un sintetizador y un ser humano. El
controlador más clásico es un teclado, que simula el teclado de órgano, piano o clave. Existen otros controladores, como por ejemplo guitarras, vientos o percusión, que permiten también enviar órdenes al sintetizador sobre qué sonidos debe producir. En todos
los casos, la idea es que el músico ejecute un instrumento que le sea técnicamente familiar.

Los controladores pueden enviar información de varias clases. Lo más básico es, por supuesto, enviar información sobre qué altura generar. Pero a través de sensores en las teclas, permiten enviar información sobre la fuerza con que se tocó la tecla, que el
sintetizador normalmente transformará en un valor de amplitud. El parámetro enviado realmente no es la fuerza, sino la velocidad con que se bajó la tecla, razón por la cual dicho parámetro recibe el nombre de velocidad (en inglés, velocity).
Aún cuando la velocidad se utilice con mayor frecuencia para controlar la amplitud del sonido, muchas veces se puede utilizar para controlar otros parámetros o funciones.
Por ejemplo, se puede emplear para simular el hecho característico de los instrumentos acústicos de que los sonidos más fuertes tienen mayor contenido armónico.
Entonces se puede controlar, mediante la velocidad, la apertura o cierre de un filtro. Así, cuando se oprime la tecla rápidamente (con fuerza), el filtro deja pasar todos los armónicos. Cuando se oprime lentamente (con suavidad), en cambio, bloquea los armónicos
superiores, lográndose un sonido no sólo más suave sino también más opaco.
Algunos teclados están equipados a su vez de celdas de carga (es decir sensores de presión) debajo de las teclas, cuya finalidad sí es medir la fuerza que se ejerce sobre la tecla, pero no durante su bajada sino después. El objeto es lograr influir sobre el sonido después de iniciado, algo que en el teclado de piano no es posible pero que en cambio es muy común en instrumentos como el violín, la guitarra o la trompeta. Este parámetro se denomina postpulsación (en inglés aftertouch). La postpulsación puede
utilizarse para alterar características de la modulación, y así darle control al intérprete del tipo de vibrato, por ejemplo, que produce. También puede usarse para variar la sonoridad de un sonido que ya empezó, y así simular una nota sostenida y crescendo en las cuerdas o los vientos, por ejemplo.
Por último existen controles de afinación, modulación y volumen, a través de palancas, pedales o diales (ruedas). Estos controles permiten modificar en tiempo real la afinación, la modulación o el volumen en forma totalmente personal, lo cual permite crear el efecto expresivo exacto que busca el intérprete.

3.5.8. Efectos
Una posibilidad muy interesante que poseen ahora cada vez más frecuentemente los sintetizadores (aún los muy económicos) es la posibilidad de agregar efectos al sonido.
Por efectos se entiende modificaciones que le dan mayor expresividad, o mayor realismo, o mayor espacialidad, etc. Por ejemplo, es posible agregar reverberación, o simular mayor cantidad de instrumentos (coro), o mejorar el sonido o su percepción
(resaltadores), etc.

3.5.9. Posibilidades adicionales
La discusión anterior sugiere el hecho sumamente interesante de que con los mismos recursos introducidos para imitar con mayor fidelidad los instrumentos conocidos, es posible crear sonidos totalmente nuevos. De hecho, uno de los métodos de síntesis
más poderosos que se conocen, la síntesis por modulación de frecuencia, fue descubierto haciendo experimentos con el vibrato en los cuales se llevaban los parámetros totalmente fuera de contexto, acercando la frecuencia de la modulación a la frecuencia
fundamental del sonido.

3.5.10. Interconexión MIDI
Las posibilidades de aplicación de los sintetizadores se multiplicaron al introducirse la norma de comunicaciones MIDI (Musical Instrument Digital Interface, Interfaz digital para instrumentos musicales). Esta norma establece un código de
comunicación entre instrumentos musicales, y entre instrumentos musicales y computadoras.
Esto permite varias cosas. En primer lugar, mediante programas de computadora denominados secuenciadores (sequencers) es posible controlar el instrumento por computadora, lo cual implica entre otras cosas, ejecutar automáticamente música previamente
programada. También permite ejecutar un acompañamiento orquestal mientras el músico toca en tiempo real la parte solista en su teclado. También es posible seleccionar los instrumentos, o modificarlos (editarlos) para lograr personalizarlos al gusto del intérprete. Es posible cambiar virtualmente todos los parámetros de cualquier sonido, así como parámetros globales como la afinación, mediante
órdenes adecuadas enviadas en forma de códigos MIDI.
Por último, también es posible realizar una “grabación” de una interpretación. Esta grabación se diferencia de una grabación tradicional en que lo que se graba no son señales de audio sino las señales MIDI que permiten al sintetizador repetir en forma
idéntica la ejecución. Esto no quiere decir que no pueda luego modificarse la ejecución. A diferencia de una grabación convencional, en la cual si se cometió un error no hay mucho que pueda hacerse para corregirlo decorosamente, en una grabación MIDI es
posible eliminar y reemplazar notas equivocadas, se puede mejorar la expresividad de un pasaje, se pueden agregar voces imposibles de tocar, cambiar de timbre, etc. Las posibilidades son casi ilimitadas. En el caso de instrumentos de gran jerarquía, es posible
lograr interpretaciones magistrales, debido a la cantidad de posibilidades de control que se ofrecen al ejecutante. Sin embargo, el dominio de la totalidad de tales posibilidades requiere una práctica y condiciones personales comparables a las necesarias para la
interpretación de cualquier instrumento tradicional.

luthier galicia psoe cat | ugt galicia | ceg galicia | ccg galicia | coag galicia | inmobiliaria galicia